Prevalence and molecular characterization of Myxobolus parasites from freshwater and saltwater fishes in Mwanza and Dar-es-Salaam, Tanzania

Main Article Content

Juliana Lambert Mkwama
Augustino Alfred Chengula
Gaymary George Bakari
Eliakunda Michael Mafie

Abstract

Background: Myxobolus species are Myxosporean parasites affecting various fish, causing diseases that weaken populations and result in substantial economic losses in aquaculture and fisheries. Despite extensive studies in Asia, Europe, and the Americas, there is limited research on Myxobolus in Africa, particularly in Tanzania, where fisheries and aquaculture are vital for fish populations, ecosystem health, and economic growth.


Methods: This study investigated the prevalence and genetic characteristics of Myxobolus parasites in 384 fish samples from Dar es Salaam (Indian Ocean) and Mwanza (Lake Victoria). Samples were examined for cysts and spores using microscopy, followed by molecular characterization through PCR amplification of the 18S rDNA gene, Sanger sequencing, phylogenetic analysis, and genetic distance evaluation.


Results: The overall prevalence of Myxobolus was 12%, with a significantly higher prevalence in Mwanza (21.88%) compared to Dar es Salaam (2.08%). Statistical analysis revealed significant associations between prevalence, fish species, and locality. Phylogenetic analysis identified two genetic lineages within a monophyletic group, clustering with Myxobolus species from Israel, Egypt, and Ghana, suggesting potential novel species. Genetic distance analysis indicated greater variation in saltwater samples compared to freshwater.


Conclusion: These findings highlight the higher prevalence of Myxobolus in freshwater and emphasize the need for targeted management strategies, continued surveillance, and research to safeguard fish populations and sustain aquaculture.

Article Details

Section

Articles

How to Cite

1.
Prevalence and molecular characterization of Myxobolus parasites from freshwater and saltwater fishes in Mwanza and Dar-es-Salaam, Tanzania. J Ideas Health [Internet]. 2025 Dec. 31 [cited 2026 Jan. 2];8(6):1380-9. Available from: https://www.jidhealth.com/index.php/jidhealth/article/view/441

References

1. WHO. Global leishmaniasis Surveillance: 2019-2020, a baseline for the 2030 roadmap. 2021.

2. Grifferty G, Shirley H, McGloin J, Kahn J, Orriols A, Wamai R. Vulnerabilities to and the Socioeconomic and Psychosocial Impacts of the Leishmaniases: A Review. Res Rep Trop Med. 2021 Jun 23; 12:135-151. doi: 10.2147/RRTM.S278138.

3. Malaria Consortium I. Leishmaniasis Control in Eastern Africa: Past and Present efforts and Future needs. Situation and Gap Analysis. 2010.

4. WHO. Leishmaniasis. Geneva: World Health Organization. Available from: [Internet]. 2023 [cited 2023 Jul 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis

5. Alvar J, den Boer M, Dagne DA. Towards the elimination of visceral leishmaniasis as a public health problem in east Africa: reflections on an enhanced control strategy and a call for action. Lancet Glob Health. 2021 Dec;9(12):e1763-e1769. doi: 10.1016/S2214-109X(21)00392-2.

6. Kassahun A, Sadlova J, Dvorak V, Kostalova T, Rohousova I, Frynta D, Aghova T, Yasur-landau D, Lemma W, Hailu A, Baneth G, Warburg A, Volf P, Votypka J. Acta Tropica Detection of Leishmania donovani and L . tropica in Ethiopian wild rodents. Acta Trop [Internet]. 2015;145:39–44. http://dx.doi.org/10.1016/j.actatropica.2015.02.006

7. Medkour H, Varloud M, Davoust B, Mediannikov O. New Molecular Approach for the Detection of Kinetoplastida Parasites of Medical and Veterinary Interest. Microorganisms. 2020 Mar 2;8(3):356. doi: 10.3390/microorganisms8030356.

8. Pareyn M, Van den Bosch E, Girma N, van Houtte N, Van Dongen S, Van der Auwera G, Massebo F, Shibru S, Leirs H. Ecology and seasonality of sandflies and potential reservoirs of cutaneous leishmaniasis in Ochollo, a hotspot in southern Ethiopia. PLoS Negl Trop Dis. 2019 Aug 19;13(8):e0007667. doi: 10.1371/journal.pntd.0007667.

9. Gadisa E, Tsegaw T, Abera A, Elnaiem D eldin, Boer M Den. Eco-epidemiology of visceral leishmaniasis in Ethiopia. Parasit Vectors. 2015;8(381):1–10. Available from: http://dx.doi.org/10.1186/s13071-015-0987-y

10. Samiji AM, Katakweba AS, Phiri EC. Trypanosomes infection in rodents and their zoonotic potential from Ruaha Ward in Kilosa District, Tanzania. Tanzania Journal of Agricultural Sciences, 21(1), 126–133. Retrieved from https://www.ajol.info/index.php/tjags/article/view/23442.

11. Katakweba AAS, Mulungu LS, Eiseb SJ, Mahlaba A, Makundi RH, Massawe AW, Borremans B, Steven R, Katakweba AAS, Mulungu LS, Eiseb SJ. Prevalence of haemoparasites, leptospires and coccobacilli with potential for human infection in the blood of rodents and shrews from selected localities in Tanzania, Namibia and Swaziland. African Zoology.2012; 47(1), 119–127. https://doi.org/10.1080/15627020.2012.11407530

12. Morand S, Chaisiri K, Chaval Y, Claude J, Tran A, Herbreteau V. Assessing the distribution of disease-bearing rodents in human-modified tropical landscapes. J Appl Ecol. 2015; 52:784–94. https://doi.org/10.1111/1365-2664.12414

13. Mangombi JB, N'dilimabaka N, Lekana-Douki JB, Banga O, Maghendji-Nzondo S, Bourgarel M, Leroy E, Fenollar F, Mediannikov O. First investigation of pathogenic bacteria, protozoa and viruses in rodents and shrews in context of forest-savannah-urban areas interface in the city of Franceville (Gabon). PLoS One. 2021 Mar 8;16(3):e0248244. doi: 10.1371/journal.pone.0248244.

14. Ziwa MH, Matee MI, Hang'ombe BM, Lyamuya EF, Kilonzo BS. Plague in Tanzania: an overview. Tanzan J Health Res. 2013 Oct;15(4):252-8.

15. Kilonzo BS, Makundi RH, Mbise TJ. A decade of plague epidemiology and control in the western Usambara mountains, north-east Tanzania. Acta Trop. 1992 Apr;50(4):323-9. doi: 10.1016/0001-706x(92)90067-8.

16. Zhang JR, Guo XG, Chen H, Liu JL, Gong X, Chen DL, Chen JP. Pathogenic Leishmania spp. detected in lizards from Northwest China using molecular methods. BMC Vet Res. 2019 Dec 9;15(1):446. doi: 10.1186/s12917-019-2174-4.

17. Mendoza-Roldan JA, Latrofa MS, Iatta R, Manoj RRS, Panarese R, Annoscia G, Pombi M, Zatelli A, Beugnet F, Otranto D. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: hindrances and opportunities. Parasit Vectors. 2021;14(461):1–12. https://doi.org/10.1186/s13071-021-04973-2

18. Ngere I, Gufu Boru W, Isack A, Muiruri J, Obonyo M, Matendechero S, Gura Z. Burden and risk factors of cutaneous leishmaniasis in a peri-urban settlement in Kenya, 2016. PLoS One. 2020 Jan 23;15(1):e0227697. doi: 10.1371/journal.pone.0227697.

19. Henke O, Mapendo PJ, Mremi A, Mmbaga LG, Pallangyo AE, Harbaum T, Mkwizu E. Skin maculae, chronic diarrhea, cachexia, and splenomegaly—Late presentation of the first autochthonous case of visceral leishmaniasis in Tanzania. PLoS Negl Trop Dis [Internet]. 2021;15(1):1–9. Available from: http://dx.doi.org/10.1371/journal.pntd.0008925

20. Alcover MM, Giner J, Rabasedas J, Geronés XR, Verde M, Fernández A, Riera C, Fisa R, Saz SV. First epidemiological survey of Leishmania infantum in the domestic ferret (Mustela putorius furo ) in a canine leishmaniosis endemic area using serology and PCR. Parasit Vectors [Internet]. 2022;15(372):1–8. Available from: https://doi.org/10.1186/s13071-022-05517-y

21. WHO. WHO Guidelines for the treatment of visceral leiahmaniasis in HIV co-infected patients in East africa and South-East Asia. 2022.

22. PO-RALG. Manyara Regional Sectariet Strategic Plan 2016/17-2020/21. 2016. 50 p.

23. PO-RALG. Arusha City Council | Five Years Strategic Plan – 2016/2017 – 2020/2021. 2016.

24. Manamperi NH, Chandu de Silva MV, Pathirana N, Abeyewickreme W, Karunaweera ND. Tissue Impression Smears as a Supplementary Diagnostic Method for Histopathology in Cutaneous Leishmaniasis in Sri Lanka. Am J Trop Med Hyg. 2018 Mar;98(3):759-762. doi: 10.4269/ajtmh.17-0748.

25. Kingdon J. The kingdon field guide to African Mammals. 2015. 268–319.

26. Herbreteau V, Jittapalapong S, Rerkamnuaychoke W, Chaval Y, Cosson JF, Morand S. Protocols for field and laboratory rodent studies. 2011. 1–56 p. Available from: http://hal.ird.fr/ird-00714514

27. Razzetti E, Msuya CA. Field Guide to the Amphibians and Reptiles of Arusha National Park (Tanzania). 2002. 1–85 p. Avilable from: https://www.lacerta.de/AF/Bibliografie/BIB_4258.pdf

28. Reimão JQ, Coser EM, Lee MR, Coelho AC. Laboratory Diagnosis of Cutaneous and Visceral Leishmaniasis: Current and Future Methods. Microorganisms. 2020 Oct 22;8(11):1632. doi: 10.3390/microorganisms8111632.

29. Hammer O, Harper DA, Ryan PD. PAST: Paleontlogical Statistics Software Package for education and data analysis. Palaeontol Electron. 2001;4(1):1-9.

30. Makundi RH, Massawe AW, Mulungu LS, Katakweba A. Species diversity and population dynamics of rodents in a farm-fallow field mosaic system in Central Tanzania. Afr J Ecol. 2009;48:313–20. https://doi.org/10.1111/j.1365-2028.2009.01109.x

31. Massawe AW, Mulungu LS, Makundi RH, Eiseb SJ, Kirsten F, Mahlaba T, Malebane P, Maltitz E Von, Monadjem A, Taylor P, Tutjavi V, Steven R. Spatial and temporal population dynamics of rodents in three geographically different regions in Africa: Implication for ecologically-based rodent management. African Zoology, 46(2), 393–405. https://doi.org/10.1080/15627020.2011.11407513.

32. Kingdon J, Happold D, Butynski T, Happold M. Mammals of Africa. Volume III: Rodents, Hares and Rabbits. London, England: Bloomsbury Publishing; 2013.

33. Mlyashimbi ECM, Mariën J, Kimaro DN, Tarimo AJP, Machang RS, Makundi RH, Isabirye M, Massawe AW. Home ranges, sex ratio and recruitment of the multimammate rat (Mastomys natalensis) in semi-arid areas in Tanzania. Mammalia. 2019; 84(4):336-343. https://doi.org/10.1515/MAMMALIA-2019-0048

34. Massawe AW, Mrosso FP, Makundi RH, Mulungu LS. Breeding patterns of Arvicanthis neumanni in central Tanzania. Afr J Ecol. 2007; 46:320–4. https://doi.org/10.1111/j.1365-2028.2007.00837.x

35. Datiko D, Bekele A, Belay G. Species Composition, Distribution and Habitat Association of Rodents from Species composition, distribution and habitat association of rodents from Arbaminch forest and farmlands, Ethiopia. Afr J Ecol. 2007; 45:651–7. https://doi.org/10.1111/j.1365-2028.2007.00789.x

36. Kessy ST. Rodent abundance, diversity and community structure in a bubonic plague endemic area, northern Tanzania. Mammalia. 2023;87(5):488–98. https://doi.org/10.1515/mammalia-2023-0012.

37. Michael N, Ringo JE. Diversity, Composition and Richness of Small Mammals in Natural and Agricultural Areas in Mbeya Region, Tanzania. Int J Mod Plant Anim Sci. 2016;4(1):35–46.

38. Makundi RH, Massawe AW, Mulungu LS. Reproduction and population dynamics of Mastomys natalensis Smith, 1834 in an agricultural landscape in the Western Usambara Mountains, Tanzania. Integr Zool. 2007 Dec;2(4):233-8. doi: 10.1111/j.1749-4877.2007.00063.x

39. Thomas SM, Soka GE, Mulungu LS. Influence of vegetation structure, seasonality, and soil properties on rodent diversi community assemblages in west Mount Kilimanjaro, Tanzania. Ecol Evol. 2022 Sep 19;12(9): e9211. doi: 10.1002/ece3.9211. Erratum in: Ecol Evol. 2022 Oct 03;12(10): e9403. doi: 10.1002/ece3.9403.

40. Mayamba A. Ecology of Major Rodent pest species in maize and rice cropping systems in Eastern Uganda. 2020.

41. Mulungu LS, Mlyashimbi ECM, Ngowo V, Mdangi M, Katakweba AS, Tesha P, Mrosso FP, Mchomvu M, Kilonzo BS, Belmain SR. Food preferences of the multi-mammate mouse, Mastomys natalensis, in irrigated rice habitats in Tanzania. Int J Pest Manag. 2014;60(1):1–8. https://doi.org/10.1080/09670874.2013.871759

42. Belmain S, Meyer A, Penicela L. Managing rodent pests in households and food stores through intensive trapping. In: Rats, mice and people: rodent biology and management. 2002. p. 430–5. Avialble from: https://www.aciar.gov.au/sites/default/files/legacy/node/451/mn96rats_mice_and_people_rodent_biology_and_mana_29893.pdf]

43. Kronfeld-Schor N, Dayan T. Activity patterns of rodents: The physiological ecology of biological rhythms. Biol Rhythm Res. 2008;39(3):193–211. https://doi.org/10.1080/09291010701683268

44. Roswell M, Dushoff J, Winfree R. A conceptual guide to measuring species diversity. Oikos. 2021;321–38. https://doi.org/10.1111/oik.07202

45. da Silva MR, Stewart JM, Costa CH. Sensitivity of bone marrow aspirates in the diagnosis of visceral leishmaniasis. Am J Trop Med Hyg. 2005 Jun;72(6):811-4.

46. Traoré B, Oliveira F, Faye O, Dicko A, Coulibaly CA, Sissoko IM, Sibiry S, Sogoba N, Sangare MB, Coulibaly YI, Traore P, Traore SF, Anderson JM, Keita S, Valenzuela JG, Kamhawi S, Doumbia S. Correction: Prevalence of Cutaneous Leishmaniasis in Districts of High and Low Endemicity in Mali. PLoS Negl Trop Dis. 2017 Feb 15;11(2):e0005379. doi: 10.1371/journal.pntd.0005379. Erratum for: PLoS Negl Trop Dis. 2016 Nov 29;10(11):e0005141. doi: 10.1371/journal.pntd.0005141.

47. Tsakmakidis Ι, Angelopoulou K, Dovas CI, Dokianakis Ε, Tamvakis Α, Symeonidou I, Antoniou Μ, Diakou Α. Leishmania infection in rodents in Greece. Trop Med Int Health. 2017 Dec;22(12):1523-1532. doi: 10.1111/tmi.12982.

48. Cassan C, Diagne CA, Tatard C, Gauthier P, Dalecky A, Bâ K, Kane M, Niang Y, Diallo M, Sow A, Brouat C, Bañuls AL. Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Negl Trop Dis. 2018 Jun 29;12(6):e0006615. doi: 10.1371/journal.pntd.0006615.

49. Monadjem A, Mahlaba TA, Dlamini N, Eiseb SJ, Belmain SR, Mulungu LS, Massawe AW, Makundi RH, Mohr K, Taylor PJ. (2011) Impact of crop cycle on movement patterns of pest rodent species between fields and houses in Africa. Wildlife Research 38, 603–609. https://doi.org/10.1071/WR10130